

LA-UR-21-25477

Approved for public release; distribution is unlimited.

Neutron Spectroscopy for NER Applications Title:

Author(s): Cutler, Theresa Elizabeth

Borgwardt, Tyler Cody Smith, Karl

Engineering Capability Review 2021 Report Intended for:

Issued: 2021-06-10

Neutron Spectroscopy for NER Applications

Theresa Cutler¹; Tyler Borgwardt¹; Karl Smith² | ¹NEN-2, ²ISR-1

Goals

- Single scatter fast (> 1 MeV) neutron spectroscopy (NS) presents a unique capability, under utilized by Nuclear Emergency Response (NER).
- Assess the range of applicability to NER scenarios. Includes automation methods
- Assess impact of attenuating materials

AmBe and Pu Oxide are clearly distinguishable using NS; Source ID is not impacted by moderators

LABORATORY MEASUREMENTS

- Sources: AmBe, Cf-252, WGPu, and PuO₂
- Shielding: Bare, Steel (0.5", 0.75", 1.25"), Polyethylene (0.5", 1.5", 3.0")
- · Chosen based on simulations in MCNP6.

· Analysis showed each source is unique, independent of shielding.

5000 Light Output (keVee) Measured light output with all shielding configurations for each source

Analysis Methods

TOOLS TO QUICKLY DETERMINE THE SOURCE AND CONSTRAIN THE SOURCE STRENGTH

- Step 1: Two regions, relative ratios
 - enables isolation of the source type
- · Step 2: Slope fit
 - Separate and identify spontaneous fission

Unfolded Neutron Spectra, with Two Regions of Interest (ROI)

Relative ratios for ROIs for varying Steel (left) and Polyethylene (right) thickness

LDRD MFR Project: 20210548MFR

Other MFR Team Members: Kurtis Bartlett (ISR-1), Cameron Bates (XCP-7), Krista Meierbachtol (NEN-2), Dave Mercer (C-PCS), Tony Shin (ISR-1), Rob Weldon (NEN-2)

ROSY ID #71f29b35

Next Steps

POSSIBLE FIELDABLE TECHNOLOGIES

- Relatively insensitive to climate and temperature, calibrated quickly in-situ, and can be automated.
- Reduce size and weight
- · Use of Silicon PhotoMultipliers (SiPMs) instead of PhotoMultiplier Tubes (PMTs).
- Future measurements likely include high-fidelity NER-like objects at NCERC.

IMPACT TO NER

- NS is a signature that has historically been ignored in NER, but it contains valuable information about the neutron source term, especially the (α,n) component.
- The new tool may reduce degeneracy in an NER
- We determined it meets the practical count time and distance requirements for NER mission needs

TRANSITION PLAN

- On-going discussions with NER Program Management.
- If a fieldable sensor can be proven in the lab, NER PMs will support advancing the TRL beyond LDRD.
- Eventually, the goal is to submit the technology to the highly selective Pallet Process.

Typical NER deployment "pallet"

